Cutting the Cost of Hosting Online Services Using Cloud
Spot Markets

Xin He, Prashant Shenoy, Ramesh Sitaraman and David lrwin
University of Massachusetts Amherst

{xhe, shenoy, ramesh}@cs.umass.edu, irwin@ecs.umass.edu

ABSTRACT

The use of cloud servers to host modern Internet-based ser-
vices is becoming increasingly common. Today’s cloud plat-
forms offer a choice of server types, including non-revocable
on-demand servers and cheaper but revocable spot servers.
A service provider requiring servers can bid in the spot mar-
ket where the price of a spot server changes dynamically
according to the current supply and demand for cloud re-
sources. Spot servers are usually cheap, but can be revoked
by the cloud provider when the cloud resources are scarce.
While it is well-known that spot servers can reduce the cost
of performing time-flexible interruption-tolerant tasks, we
explore the novel possibility of using spot servers for reduc-
ing the cost of hosting an Internet-based service such as an
e-commerce site that must always be on and the penalty for
service unavailability is high.

By using the spot markets, we show that it is feasible to
host an always-on Internet-based service at one-third to one-
fifth the cost of hosting the same service in the traditional
fashion using dedicated non-revocable servers. To achieve
these savings, we devise a cloud scheduler that reduces the
cost by intelligently bidding for spot servers. Further, the
scheduler uses novel VM migration mechanisms to quickly
migrate the service between spot servers and on-demand
servers to avoid potential service disruptions due to spot
server revocations by the cloud provider. Our work pro-
vides the first feasibility study of using cloud spot markets
to significantly reduce the cost of hosting always-on Internet-
based services without sacrificing service availability.

Categories and Subject Descriptors

C.4 [Performance of Systems]|: Reliability, availability,
and serviceability

Keywords

Cloud computing; spot markets; cost optimization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HPDC’15, June 15-20, 2015, Portland, Oregon, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3550-8/15/06 ...$15.00.
http://dx.doi.org/10.1145/2749246.2749275 .

1. INTRODUCTION

Cloud computing has become the paradigm of choice for
building low-cost, scalable Internet-based services. Cloud
providers such as Amazon AWS, Microsoft Azure [1], and
Google Compute Engine [2] operate large, distributed com-
puting infrastructures that provide computing and storage
resources that can be leased by service providers. Cloud
providers offer a number of benefits to service providers such
as a pay-as-you-go model and flexible, on-demand allocation
of resources to hosted services. A key business driver for the
rapid adoption of cloud computing by service providers is
the reduction in infrastructure costs. Unlike the traditional
method of buying dedicated infrastructure, which must be
provisioned in advance for the peak demand, leasing cloud
servers enables the service provider to scale the service as it
grows over time and also exploit just-in-time allocation of
capacity to handle peak workloads. Consequently, leasing
cloud servers is often more economical than building dedi-
cated infrastructure, especially for services with dynamic or
growing workloads.

Today’s cloud platforms offer a variety of server types to
meet the diverse needs of their hosted services. Cloud servers
vary in the offered resource configurations, the leasing cost
and the service model offered to customers. For instance, on-
demand servers offer a fixed rental cost and a non-revocable
model, where the customers pay a fixed cost and can vol-
untarily relinquish the server when they no longer need it.
In contrast, spot servers offer a variable rental cost and a
revocable model, where the customer bids an upper limit
on the price they are willing to pay for a server. The cost
of these spot servers fluctuates over time and an allocated
spot server may be revoked by the cloud provider when its
price rises above the bid price the customer is willing to pay
for the server. Spot servers allow a cloud provider to offer
unused server capacity at a lower price to customers, while
allowing the cloud provider to revoke these servers at any
time in order to fulfill requests for higher-priced on-demand
servers.

Internet-based services that use the cloud vary signifi-
cantly in their service requirements. At one end of the
spectrum lie data-intensive cloud applications that use cloud
servers to run large data analytics tasks (e.g., using MapRe-
duce); such "big data” applications often run in batch mode
with the results made available within a specified time pe-
riod. As noted in Amazon’s description of their cloud service
[3], spot servers are a popular choice for reducing the cost
of running “interruption-tolerant” and “time-flexible” tasks,
such as data-intensive batch analytics and scientific comput-

ing. Indeed, there has been recent research [6] [19] [23] [13]
on using spot markets to provide non-realtime services that
can be performed in batch mode at a reduced cost.

At the other end of the spectrum are always-on Internet-
based services that serve user requests in real-time. Providers
of web content such as CNN; video content such as NetFlix,
application portals such as Salesforce, e-commerce portals
such as Walmart.com, and social networking sites such as
Facebook all belong in this category. Traditionally always-
on Internet-based services have relied on dedicated deployed
servers owned by the service provider or a third-party con-
tent delivery network. Recently, in part to reduce costs,
there has been a trend for always-on services to use non-
revocable on-demand servers from the cloud markets to meet
their infrastructure needs. For instance, Netflix uses Ama-
zon’s on-demand cloud services to operate their backend ori-
gin infrastructure that stores and serves out videos [4].

In this paper, we ask the intriguing question: can an
always-on Internet-based service utilize the cloud spot mar-
kets to host their service at a lower cost without sacrific-
ing service availability? We explore the feasibility of such
a proposition and seek to quantify the cost reduction that
is possible in comparison with using the more traditional
option of non-revocable on-demand servers. Although the
use of spot servers can lower the cost of hosting an Internet-
based service, our approach raises new challenges since spot
servers can be revoked at any time. Such a revocation can
potentially cause unavailability of the service for which the
penalty is high. It is worth noting that a widely-accepted
industry requirement for an always-on Internet-based ser-
vice such as an e-commerce site is to have at least four nines
(99.99%) of availability. Alternately, the unavailability of
the service can be at most one basis point (0.01%), which
roughly translates to 4.3 minutes of downtime per month.
The need to keep unavailability very low can be understood
from the perspective of a large e-tailer, which could lose a
significant amount of revenue if their website is down even
for a few minutes during a peak hour [14]. To address this
key challenge, we design a novel approach that combines
intelligent bidding algorithms that reduce the frequency of
revocations and combine it with intelligent migration mech-
anisms that can quickly migrate a service running on a spot
server that is being revoked to an on-demand server. We
show that as a result the service unavailability can be sig-
nificantly reduced so as to be within an acceptable range.

Our Contributions: To our knowledge, our work is the
first to examine the feasibility of using cloud spot markets
to reduce the cost of always-on Internet-based services, while
ensuring that service unavailability is acceptably small. Our
work provides significant impetus for service providers to
build systems that use the spot markets in a novel way to
reduce their costs. We make the following specific contribu-
tions.

1. While VM migration mechanisms have been studied in
other contexts, our work is the first to use clever migration
in the cloud context to avoid service unavailability.

2. We propose proactive bidding algorithms that migrate
a spot server before it is revoked by the cloud provider, in
contrast with reactive algorithms that migrate after the spot
server is revoked. We show that being proactive reduces
both the service cost and unavailability in comparison with
being reactive.

3. We compare three different migration mechanisms:
memory checkpointing, memory checkpointing with lazy re-
store and live. We conclude that using checkpointing alone
or using it in combination with live migration does not pro-
vide sufficiently low service unavailability. However, check-
pointing in combination with lazy restore provides a service
unavailability that is acceptable, so as to be a viable alter-
native for always-on Internet-based services. Further, the
addition of live migration halves the unavailability even fur-
ther.

4. We study multiple possible schemes for hosting Internet-
based services on the spot market. First, we study hosting
an Internet-based service using our cloud scheduler with the
option to use only a single spot market in a single geographi-
cal region. In this case, the cost achieved by our scheduler is
one-third to one-fifth of the baseline cost of hosting the same
Internet-based service using only on-demand servers. If our
scheduler has the ability to use multiple markets within the
same region, the cost decreases further. And, if the sched-
uler has the ability to use multiple regions, the cost decreases
even further. In the latter two cases, our scheduler exploits
the lack correlation in the spot prices across different mar-
kets and different regions to achieve a lower cost.

Roadmap: The remainder of this paper is organized as
follows. Section 2 presents background on cloud platforms
and markets. Section 3 presents the design of our cloud
scheduler, and Section 4 presents our experimental results.
We present related work in Sec 7 and conclude in Sec 8.

2. BACKGROUND

In this section, we present background on cloud platforms
and cloud markets and then describe the research problem
addressed in this paper.

2.1 Cloud Platforms and Markets

Our work targets infrastructure clouds that lease server
resources to service providers. An infrastructure cloud is a
virtualized data center where the cloud provider allocates
virtual machines (also referred to as virtual servers) to cus-
tomers using the underlying physical servers. An infras-
tructure cloud typically supports different types of virtual
servers that vary in their hardware configurations—for in-
stance, Amazon’s EC2 cloud supports over a dozen different
virtual server configurations that differ in the amount of
CPU, memory, disk and network allocations. The cost of
a cloud server depends on the chosen configurations and is
billed based on time of usage (e.g., hourly).

A cloud service provider can request any server type in
one of two modes: on-demand and spot. On-demand cloud
servers incur a fixed cost and are non-revocable. For in-
stance, the fixed hourly price of on-demand server varies
from 6 cents per hour for the small configuration to as much
as $2.19 per hour for the double-extra large configuration.
Importantly, once allocated, on-demand servers are non-
revocable and the service provider is guaranteed availability
to a server until it is no longer needed and voluntarily termi-
nated. Since cloud platforms are provisioned with sufficient
capacity to handle peak seasonal demands, they often have
many unallocated and unutilized servers, which results in
lost revenues due to lack of usage. Cloud providers such as
Amazon have begun to offer this unused server capacity at
significantly lower prices in the form of spot servers. Spot
markets were first introduced by Amazon’s EC2 cloud in

2009. Unlike on-demand servers, a spot server incurs a vari-
able price and is revocable. A cloud-based service provider
may request a spot server of any configuration by specifying
the maximum hourly price they are willing to pay for such
a server (also known as the bid price). Since the price of
spot servers varies continuously, the request is granted only
if the current price is below the customer’s bid price. Fur-
thermore, if the spot price rises above the bid price at any
point in the future, the server is revoked. As shown in Figure
1, the price of a spot server fluctuates over time based on
supply-demand considerations. Prices are low when there
is plenty of unused capacity in relation to demand and the
price rises when there is more demand for spot servers or in-
creased demand for on-demand servers, both of which causes
the customers with the low bid prices to lose these allocated
servers (which are then re-allocated to higher paying on-
demand customers).

Researchers have studied the dynamics of spot markets.
Each server configuration has its own spot market with fluc-
tuating prices. The different spot markets exhibit different
types of dynamics and the price can also spike up during pe-
riods of extreme scarcity. As shown in Figure 1, the price of
a large server can be as low as few cents per hour for long pe-
riods and can spike to as much as $3/hr during high-demand
periods. Other than the variable price and revocable nature,
spot servers are identical to on-demand servers in all other
respects such as their resource configurations. They are also
billed on an hourly basis, based on the spot price (not the
bid price) at the beginning of each hour. Partial hours are
not billed if a spot server is revoked before the end of an
hourly billing period. Researchers have also observed that
upon being revoked, a spot server is given upto a 2 minute
grace period to save all unsaved memory state to disk and
execute a graceful shutdown (failing which it is forcibly ter-
minated) [12]—while this was an "undocumented” feature of
spot servers, Amazon has recently made this grace period
official policy by providing an explicit two minute warning
prior to revoking a spot server.

2.2 Problem Statement

Conventional wisdom has held that always-on services should

be hosted using either dedicated hardware or non-revocable
on-demand servers and that spot servers may not be suit-
able for this purpose due to potential service interruptions
caused by server revocations. In contrast, batch jobs such
as MapReduce-style data analytics tasks that have highly
elastic deadlines can exploit spot servers to lower their costs
while potentially increasing completion time; such tasks can
employ checkpointing methods to periodically save their state
to disk and resume from the most recent checkpoint if the
computation was interrupted by the revocation of spot servers.
Thus, as noted by Amazon, spot servers were designed for
performing time-flexible and interruption-tolerant tasks.

In this paper, we study the feasibility and benefits of using
spot servers for running always-on Internet services, which
are neither time-flexible nor interruption-tolerant. We study
how a service provider can exploit recent advances in OS
and virtualization techniques such as nested virtualization
and fast migration of virtual machine state to quickly move
a service from spot servers to on-demand servers upon re-
vocation and back to spot servers when they are available
again. We seek to design clever bidding algorithms that ex-
ploit the low costs of spot servers and yet proactively migrate

05
04
03
02 | ‘
A B
" N Y.y iy
02/01 02/08 02/15 02/22 03/01
Date

large

Price (%)

(a) Varying spot price of a small server

4
35 large

3
25

2
15 |m |
! N
05 ‘
0 JIi§ 1 1 nin ,
02/01 02/08 02/15 02/22 03/01

Date

Price ($)

(b) Varying spot price of a large server

Figure 1: Spot prices over a month long period in
Amazon’s US East-1 region. The prices across mar-
kets even within the same region are not strongly
correlated, a fact we use in our multi-market bid-
ding algorithms.

the service to on-demand instances when faced with risk of
revocation. We also seek to quantify the service unavailabil-
ity due to downtimes when the cloud platform revokes spot
servers. Our overall objectives are to quantify the cost sav-
ings and service unavailability and determine whether com-
bining clever bidding and migration technique enable spot
servers to be used in a novel fashion for always-on services.

3. A CLOUD SCHEDULER FOR ALWAYS-
ON SERVICES

We design a cloud scheduler that procures servers in the
cloud markets to host an always-on Internet-based service
while minimizing both the cost and the unavailability of the
service. A naive approach for using spot servers to host an
always-on service is depicted in Figure 3. In this case, the
service runs on a spot server for a period of time and the
spot server is then revoked by the cloud provider, resulting
in the service to be unavailable. Upon revocation, the cloud
scheduler immediately requests an on-demand server to re-
place the revoked spot server. When the on-demand server
is (eventually) allocated by the cloud provider, the Internet
service is restarted on the new server. This naive baseline
approach has two limitations: (i) any memory state of the
spot server is lost upon revocation, and (ii) the service is un-
available from the time of revocation to the instant where the
service is restarted on a new on-demand server. Note that
even in this naive approach, the disk state of the service is
preserved, since we assume that networked storage volumes
are used by the service, so all data on the storage volume
is preserved when the server is revoked and the volume can
simply be re-attached to the new on-demand server (such
networked storage volumes are referred to as EBS volumes
in Amazon’s EC2 cloud).

MIGRATE

On Demand
Servers

Spot
Servers

Cloud Scheduler

Figure 2: Interactions between the cloud scheduler
and the cloud markets.

Revokes On-Demand
Server Server Avail.
| |
| |
| |
—_—
Execute | | OnDemand
onSpot . _ _ _ _ ____ [
Request | Bootup Memory State
) On-Demand Server | Disk State Lost
e > Time

Service Unavailable (not to scale)

Figure 3: A naive approach to migrating from spot
to on-demand server that involves substantial ser-
vice unavailability and loss of memory state.

Our cloud scheduler uses a combination of intelligent bid-
ding strategies and OS and virtualization-based techniques
to address the two drawbacks of the naive approach. Our
scheduler seeks to (i) eliminate any loss of memory state by
migrating any such state to the new server, and (ii) reduce
service unavailability or eliminate it completely in some sce-
narios. Figure 2 provides an overview of the server transi-
tions implemented by the cloud scheduler. We next describe
the two key components of the scheduler.

3.1 Bidding Algorithms

The cloud scheduler’s bidding algorithm seeks to achieve
two goals: (i) determine what prices to bid when acquir-
ing spot servers so as to reduce the frequency of revocations
and achieve cost savings over solely using on-demand servers,
and (ii) determine when to transition from spot servers to
on-demand servers and vice versa. As noted earlier, when
requesting a spot server, the cloud platform requires a max-
imum price pp to be specified by the service provider. Since
the cost of a spot server fluctuates over time based on sup-
ply and demand considerations, this maximum price py, also
known as the bid price, is the upper limit that the service
provider is willing to pay for the spot server. Hence, when

the instantaneous spot price psp(t) rises above the bid price
o, the spot server is revoked by the cloud provider.

The bidding algorithm must intelligently choose the bid
price py to achieve its goals. In general, a higher bid price
reduces the chances that the spot price will rise above the
bid and reduces the chances (and frequency) of server revo-
cation. However, there is a risk that the spot price could
increase but still stay below in the bid price, resulting in
more cost and lower savings when compared to a pure on-
demand model. In contrast, a lower bid price increases the
chances of a revocation but can also lower costs.

The cloud scheduler implements two variants of the bid-
ding algorithm. Note that whenever the spot price rises
above the price of an on-demand servers, the cost savings
vanish and it is more cost-effective to transition to an on-
demand server and pay the fixed on-demand price over pay-
ing a even higher spot price. In the reactive version, the bid
price is set to the price of an on-demand server i.e., pp = pon,
where p,,, denotes the cost of an on-demand server. Hence,
setting p, = pon ensures that the cloud platform will revoke
the spot server whenever the spot price increases above the
on demand price—forcing a migration (transition) to an on-
demand server.

An alternative approach, which we refer to the proactive
version, the bid price is set to a value that is higher than
the on-demand price: pp = k- pon, k > 1. In this case,
the bidding algorithm continuously tracks the fluctuating
spot price psp(t) and whenever the spot price rises above
the on-demand price, the algorithm wvoluntarily and proac-
tively transitions to an on-demand server to pay the fixed
on-demand price over paying the higher spot price. Since
the migration to an on-demand server is voluntary, the cloud
scheduler has more time and flexibility to make the transi-
tion, which in turn allows service unavailability to be virtu-
ally eliminated. Note that in the reactive approach, the tran-
sition must be made within a limited time duration before
the server is revoked, while in the proactive case, the cloud
scheduler can wait until the migration has completed before
relinquishing the spot server. In the extreme case of the
proactive version, the bidding algorithm can bid the high-
est bid that is allowed by the cloud platform (e.g., a large
multiple k of the on-demand price) which gives the greatest
flexibility! Regardless of the actual bid, a large sharp spike of
the spot price above the bid price will cause the spot server
to be revoked by the cloud platform before the proactive
algorithm can begin (or finish) its voluntary migration.

After transitioning to an on-demand server, the bidding
algorithm continues to monitor the spot price psp(t) and
can again request a spot server when ps,(t) falls below the
on-demand price pon, and initiate a reverse migration from
an on-demand to the spot server; such migrations are also
voluntary and can take as long as needed to migrate the
service.

Thus, both the reactive and proactive version of the bid-
ding algorithms involve the following steps:

1. Forced Migration. If the psp(t) > py and the algorithm
holds a spot server, then the spot instance is termi-
nated by the cloud provider. The algorithm is forced
to migrate the spot server to an on-demand server.

Note that cloud providers do not allow an infinite bid price.
The largest bid price currently allowed by Amazon is four
times the on-demand price which we use in our proactive
algorithm.

~A T] |
Application Live Migrate | | |
| I

OS kernel

Nested Hypervisor
(Xen-Blanket)

Nested Hypervisor

VM Allocated | (Xen-Blanket)

To Customer

VM Kernel (Xen Hypervisor) VM Kernel (Xen Hypervisor)

Physical Server Physical Server

Figure 4: Nested virtualization and live migration
of a nested virtual machine.

2. Planned Migration. If py > psp(t) > pon near the end
of a billing period (i.e., billing hour) and the algorithm
holds a spot server, it reduces cost by voluntarily mi-
grating to an on-demand server.

3. Reverse Migration. If pon > psp(t) near the end of
a billing hour and the algorithm currently holds an
on-demand server, it reduces cost by re-procuring and
migrating back to a spot server.

Note that planned migrations are more desirable than forced
migrations, since there is more time to migrate the service
in the former, resulting in less disruption to the service.
Whereas with a forced migration there is only a short time
window before the spot server is terminated.

3.2 OS Mechanisms

The cloud scheduler uses four well-known OS-level mech-
anisms to implement migrations from spot servers to on-
demand servers and vice versa. While these OS-level mech-
anisms were proposed elsewhere, they have not been used in
cloud platforms previously, nor has this novel combination
been studied previously in the cloud context.

We assume that migrations from spot to on-demand servers
and back is implemented at the virtual machine level. Vir-
tual machine migration is transparent to the OS and the
applications and does not require any modifications to ei-
ther, allowing the technique to apply to all applications
(here, cloud services) and operating systems unmodified.
Our cloud scheduler employs three variants of virtual ma-
chine migration, as described below, to achieve different
goals.

Nested wvirtualization. All common cloud platforms are
virtualized and allocate virtual servers in the form of vir-
tual machines. As a result, migration of virtual machines
(VMs) is feasible in cloud platforms. Unfortunately, how-
ever, today’s cloud platforms do not expose migration ca-
pabilities of virtual machines to customers and retain this
control for themselves. Since the ability to migrate virtual
machines from spot to on-demand servers and back is cen-
tral to our approach, the cloud scheduler uses a mechanism
called nested virtualization to achieve this goal in today’s
cloud platforms. Nested virtualization involves running a
virtual machine inside another virtual machine and the ap-
plication runs inside the nested virtual machine (see Figure
4). The advantage of nested virtualization is that it allows
complete control of the nested virtual machine to the user
without requiring any privileged access to the native virtual
machine. Since cloud platforms allow a customer to run any
OS kernel inside their virtual servers, a customer can eas-
ily run a nested virtual machine kernel, instead of a regular

N Migrated
Nested VM

OS kernel, and run the second, nested VM inside the vir-
tual server. In such a scenario, we only need to migrate
the nested virtual machine from one virtual server to an-
other (e.g., spot to on-demand) without migrating the out-
side virtual machines. Nested virtualization was proposed in
[20] and has been implemented in Xen, a widely used open-
source virtualization platform, in the form of Xen-Blanket,
which is compatible with Amazon’s cloud servers that also
use Xen. Experiments reported in [20] show only a modest
overhead due to the second nested virtualization layer.

Live migration. Live virtual machine migration is a tech-
nique where an entire virtual machine is migrated from one
physical server to another while the OS and resident appli-
cations continue to execute without requiring any downtime.
Live VM migration techniques were proposed over a decade
ago and are now supported by most common commercial
and open-source virtual machine products (e.g., VMWare,
Xen) [7]. Live migration is implemented by interactively
copying the memory pages of the virtual machine from the
source server to a destination server while the OS and appli-
cations continue to run. Since the VM is running during this
migration process, memory pages will continue to be mod-
ified. Hence, live migration operates in rounds, where each
round involves sending memory pages modified since the pre-
vious round. After several round of incremental transfers,
the difference between the source and destination servers
shrinks, and the virtual machine is momentarily paused to
send the final set of changed memory pages. The VM at the
destination is resumed and the source VM is terminated.
This allows the application and its network connections to
smoothly transition to the new server and no network re-
configuration is needed (the IP address remains unmodified
when transferring the VM within a LAN). We note that VM
migration techniques typically only transfer memory state of
the virtual machine and do not transfer disk state since disk
state is assumed to be stored on a network disk that can
simply be re-attached to the destination server. By using
nested virtualization, our cloud scheduler can live migrate
nested virtual machines as shown in Figure 4. Further, the
cloud scheduler uses techniques such as virtual private cloud
[3] that allow customer control over the assignment of IP ad-
dresses to one’s virtual machines to ensure that the address
assigned to the nested VM on a spot server can be trans-
parently reassigned to an on-demand server upon migration
and vice versa.

Bounded memory checkpointing. Live migration is an at-
tractive and straightforward method for transparently mi-
grating a virtual machine from one server to another. The
main limitation of the approach, however, is the latency in-
volved in memory copying may be large, especially for larger
server configurations that have substantial amount of mem-
ory (e.g., tens of GB of RAM). While these longer latencies
can be easily accommodated during planned or reverse mi-
grations initiated by the bidding algorithm, where there is
flexibility in determining how much in advance to start the
migration process, they may not be feasible for forced mi-
grations. When a cloud platform revokes a spot server, there
is a limited window of time to execute a graceful shutdown
and this period may not suffice to live migrate a nested VM
with large amounts of memory. Consequently a different ap-
proach is needed to quickly save memory state during forced
migrations.

Nested VM

Checkpoint

N Application Memory State

OS kernel

VM Allocated _}~ Nested Hypervisor

Xen-Blanket,
To Customer ()
VM Kernel (Xen Hypervisor)

Physical Server

(a) Checkpoint

O

Checkpointed State

(Lazy) Restore
Checkpointed State|

A8 Migrated

Nested Hypervisor
Nested VM

(Xen-Blanket)

VM Kernel (Xen Hypervisor)

Physical Server

(b) Restore

Figure 5: VM Memory checkpointing and restoration.

Memory checkpointing of a virtual machine in the form
of suspend-resume involves writing out the entire memory
contents of a VM to disk prior to suspending the virtual ma-
chine, and then resuming it at a later time by loading the
checkpointed memory state (see Figure 5). Such suspend-
resume support is already built into all virtual machine prod-
ucts and is an alternate approach to live migration for cap-
turing memory state and resuming the VM on a different
machine. However, writing of the memory contents of a vir-
tual machine to a network disk can also involve a substantial
latency for servers with substantial amounts of RAM. For-
tunately, we need not wait to initiate memory checkpoint-
ing until a revocation is in progress and can instead run
memory checkpointing periodically in the background on a
continuous basis. In this case, memory contents are asyn-
chronously written to disk in the background periodically
and upon a renovation, only the incremental modified mem-
ory state since the most recent checkpoint needs to be writ-
ten out, making the capturing of memory state very quick
(and well suited to the limited time window available dur-
ing a forced migration). Our cloud scheduler uses a recently
proposed checkpointing technique called Yank [18] that pro-
vides an upper bound on the time needed to complement a
checkpoint — given a bound 7, it dynamically adjusts the pe-
riodicity of the background checkpointing process to ensure
that the incremental state does not exceed a threshold and
can always be written out within the bound of 7 seconds.
By setting the bound to a small time window allowed by the
cloud platform during a revocation, our cloud scheduler can
ensure that all of the memory contents are safely captured
to disk and the nested VM can be resumed on a different
cloud server; we assume that network disks are used for the
purpose of capturing memory state so that the disk is still
available after a spot server has terminated.

Lazy VM restore. While bounded memory checkpointing
allows suspension of the VM’s memory state to complete
within a small, bounded time period, the resume part of the
suspend-resume process can still involve a latency of tens of
seconds—since it requires reading the saved memory state
from disk into RAM prior to the resumption of the nested
VM. For larger cloud server configurations, this may involve
reading tens of gigabytes of RAM state from disk. Hence, we
employ an OS mechanism called lazy restore that substan-
tially speeds up the resumption of a virtual machine from its
saved memory state. Lazy restore [10, 24, 11] involves read-
ing in only a small subset of the memory pages and resuming
execution. The remaining memory state is read concurrently
in the background as the VM executes. In the event the ex-

ecuting VM accesses a memory page that has not yet been
read from disk, the corresponding memory page is fetched
on-demand from disk (akin to how a page fault is handled
in traditional operating systems). Lazy restore only requires
a small fraction of the memory state to be read from disk
before execution can be resumed, allowing for fast resumes
and very small downtimes. Of course a downside is that the
VM execution may be slower for a period of time due to the
page faults that are seen while the remaining memory state
is being loaded from disk in the background.

This novel combination of the four OS mechanisms makes
it feasible to implement forced, planned and reverse migra-
tions of our bidding algorithm in today’s cloud platforms.

4. EVALUATION OF THE CLOUD SCHED-
ULER

We use empirical micro-benchmark measurements on Ama-
zon’s EC2 cloud as well as simulations seeded by Amazon’s
spot price traces to drive our evaluation. We evaluate the
bidding algorithms and migration mechanisms employed by
our cloud scheduler in three different scenarios. The sim-
plest is the single-region single-market scenario where the
cloud scheduler procures servers of a single size from a sin-
gle spot market at a single geographical region, migrating to
on-demand servers of the same size when necessary. More
complex is the single-region multi-market scenario where the
cloud scheduler has the option to buy servers of different
sizes from different spot markets, though all of the servers
are hosted at a single region. The most complex situation
is the multi-region multi-market scenario where the cloud
scheduler can procure servers of different sizes from differ-
ent markets across any of the regions offered by the cloud
provider. Intuitively, the cost reduction attainable should
increase with each scenario since the cloud scheduler has
more options for lowering the cost. However, the migra-
tion becomes more complex—a multi-market strategy in-
volves packing multiple nested VMs onto a larger spot or on-
demand server, while multi-region involves migration across
regions that could be more complex and expensive.?

4.1 Microbenchmarks

We ran the XenBlanket nested hypervisor on Amazon’s
cloud servers and conduct a series of micro benchmark mea-
surements to capture the overheads of various migration
mechanisms; these measured values are then used to param-

*WAN VM migration across regions involves additional net-
work reconfigurations [21] that also add to the overheads.

50

Reactive mmmmm
Proactive sessssss
. 40
S
8 30
el
[}
N
T 20
£
o
z
10
0

small medium large xlarge

(a) Both proactive and reactive provide significantly

smaller cost than the baseline.

0.1 T
Reactive
Proactive s
5 008
o
<
@
& 006
S
2
= 004
el
[}
Qo
(s}
L 0.02 I
O I-

small medium large xlarge

0.1 T
Reactive
Proactive sssssss
0.08
S
> 006
£
=
s o004
=
=]
0.02 I
0 l- Il
small medium large xlarge
(b) Proactive mitigates service unavailability better than
reactive.
0.1

Planned/Reverse Migrations/hour

Reactive
Proactive s

0.08

0.06

0.04
0.02
small medium large xlarge

(c) Proactive has a smaller number of forced migrations (d) Proactive and reactive have similar number of

per server per hour.

planned /reverse migrations per server per hour.

Figure 6: A comparison of proactive versus reactive bidding algorithms.

Instance type US east (s) US west (s) EU west (s)
On-demand 94.85 93.63 98.08
Spot 281.47 219.77 233.37

Table 1: Average Start-up Time of On-demand and
Spot instances

Live Memory Disk
migrate (s) checkpointing (s) copy (s)

Inside US East 58.5 28.9 -
Inside US West 57.1 28.8 -
Inside EU West 58.2 28.05 -
US East to US West 73.7 — 122.4
US East to EU West 74.6 - 140.5
US West to EU West 140.2 171.6

Table 2: Overhead of migration mechanisms.

eterize subsequent simulation experiments. We first measure
the latency to allocate an on-demand and spot server of dif-
ferent sizes in different regions. Table 1 shows the mean
measured values across multiple runs and shows that typ-
ical allocation times are around 1.5 minutes for an on de-
mand server and between 3.5 to 4.5 minutes for spot servers.
Next, we measure the latency to live migrate a nested VM
with 2GB of RAM within and across regions. Table 2 shows
that live migration latency is around 1 minute for intra-
data center migration and vary from 73 to 140 seconds for
cross region migrations. While LAN migration can use net-
worked storage and do not require disk state transfers, cross-
region WAN migration do and the table shows that cross-

datacenter copying of disk state take between 2 to 3 min-
utes per GB of disk state. We also benchmark the latency of
memory checkpointing, which involve writing memory pages
sequentially to a network attached disk and observe a la-
tency of 28s per GB of memory state (VM restoration la-
tencies which read this data back from disk are similar). In
contrast, we assume a lazy restoration latency of 20s, which
is independent of memory size, based on measurements re-
ported in [10].

In our microbenchmarks, we conducted multiple runs to
obtain estimated startup times and migration times. In ad-
dition to these measured parameters, we also gathered pub-
lished spot price history for Amazon’s spot servers. In our
simulations, we sampled the empirically observed distribu-
tions and used a different sample for each simulation run.
We report results for small, medium, large and xlarge spot
servers at four Amazon regions: US East 1A, US East 1B,
US West 1A and Europe West 1A.

4.2 Proactive versus Reactive Bidding

We start with the simplest scenario where our bidding al-
gorithm described in Section 3.1 uses a single market (either
small, medium, or large) in a single region (us-east). The
bidding algorithm alternately uses servers procured in the
chosen spot market in the us-east region or an on-demand
server obtainable at the same region. We study the two
variants of the bidding algorithm described earlier, proac-
tive and reactive, both using the bounded checkpointing

with lazy restore for migration.® To estimate the cost sav-

ings from using the spot market, we use the cost of using
only on-demand servers to host the service as the baseline.
As shown in Figure 6(a), both proactive and reactive ap-
proaches show a significant reduction in cost achieving 17%
to 33% of the baseline cost of not using the spot market
at all. However, proactive does achieve a slightly smaller
cost than reactive in all three markets. More importantly,
the proactive algorithm achieves significantly less service un-
availability than the reactive algorithm in all markets (cf.
Figure 6(b)). Specifically, the unavailability of the proac-
tive algorithm is smaller by a factor that ranges from 2.5
to 18 when compared to the reactive algorithm. The rea-
son is that the proactive algorithm significantly reduces the
number of forced migrations in comparison with the reactive
algorithm as shown in Figure 6(c). Specifically, the proac-
tive algorithm migrates its servers from the spot market to
the on-demand market before it is forced to do so, giving
it more time to perform the migration, in turn reducing the
possibility of the service being unavailable during the migra-
tion process. Figure 6(d) shows that proactive and reactive
algorithms have similar number of planned/reverse migra-
tions.

The results for other regions are also similar to what we
presented above for us-east. Thus, we conclude that it is
better to be proactive rather be reactive, both from the per-
spectives of cost and unavailability. Henceforth, we will use
the proactive bidding algorithm and its variants in all our
subsequent evaluations.

4.3 Evaluating the Migration Mechanisms

We next evaluate the efficacy of four different combina-
tions of migration mechanisms for the proactive bidding
algorithm: memory checkpointing (with standard restore),
memory checkpointing with lazy restore, live migration with
checkpointing and live migration with checkpointing and
lazy restore. The service unavailability of each combina-
tion is shown in Figure 7 for small servers in the US East
la region; we report results for normal case as well as a pes-
simistic case where all migration mechanisms exhibit worst
case behavior. Pure checkpointing alone has the worst un-
availability of 0.018% due to the long latency needed to
read the save memory state from disk prior to resuming
the virtual machine. The unavailability improves signifi-
cantly to 0.004% when lazy restore is used to speed up
the resumption of a checkpointed VM. Similarly live migra-
tion with checkpointing has higher unavailability of 0.0095%
since any forced migrations employ checkpointing with its
longer downtimes. The final combination of using live mi-
gration when possible, and checkpointing with lazy restore
for any forced migration has the smallest unavailability of
0.002% (roughly factor of two better than checkpointing
with lazy restoration alone). According to [8] and [15], in
the worst case, the downtime during migration of a 4GB vir-
tual machine can be 10s, and migration of a 2GB VM causes
down time of as much as 4s. The worst case of memory re-
store is copying the whole memory to the new VM while
restoring. In our measurement, the time to copy a 2GB
disk file which is less than 120s inside a region. The pes-
simistic scenarios, which assume pessimistic values of a 10s
outage for live migration, and 120s latency for lazy restora-

3Results for planned live migrations are similar and omitted
here.

tion, see uniformly higher unavailability for all mechanisms,
with the best unavailability of 0.017% for live migration
with checkpointing and lazy restore. Thus we conclude that
pure checkpointing is not desirable due to its higher unavail-
ability, when used alone or in combination with live migra-
tion. However, when used with lazy restoration, the tech-
nique provides unavailability values that make it feasible for
always-on services, with live migration further halving the
unavailability of the service.

Pessimistic
Typical s

0.266
0.142
0.1
0.026
0.0177
0.0137
0.01 0.0095
0.0042
0.0022
0.001

C/\'pr C/\’,br C/\’,or C/\'pr
/Ve

Unavailability (%)

7y Ly

Figure 7: Comparison of different migration mecha-
nisms using proactive bidding. (Unavailability per-
cent is plotted in log-scale)

4.4 Multi-Market Bidding Strategies

We study the benefit of bidding in multiple spot markets
in comparison with bidding in a single spot market within a
given region. The intuitive reason why multiple markets can
decrease the cost is that when one spot market has a price
rise the other markets in the same region may not experience
a similar rise. So, our cloud scheduler can move its servers
from the pricier spot market to one of the cheaper ones.

We modified our proactive bidding algorithm of Section 3.1
to use multiple markets within the same region as follows.
In the planned migration step, we look to see if there is any
spot market in the same region that has a cheaper price than
the on-demand price. If so, the algorithm bids in the cheap-
est available spot market in that region and migrates the
spot server to that market. If not, the algorithm migrates
the spot server to the on-demand server as it is currently
cheaper than any of the spot servers. The forced and re-
verse migration steps work the same as before.

We evaluated our multi-market bidding algorithm in all
regions and show the results in Figure 8. As shown in Fig-
ure 8(a), a multi-market scheme was able to reduce the cost
by 8% for us-west-la to 52% for us-east-1b in comparison
with the average cost of the single-market schemes in those
regions. The reason for the reduction is that price correla-
tion between the different markets is low as shown in Fig-
ure 8(b), i.e., when the price spikes up in one of the spot
markets, another of the spot markets in the same region may
not have an equivalent increase. Our multi-market bidding
algorithm exploits the lack of correlation to move servers
from the costlier to the cheaper spot market.

4.5 Multi-Region Bidding Strategies

We study multi-region bidding algorithms that can move
servers between spot markets both within a given region

50

Avérage Sing\e-Market —
Multi-Market sssssss

40

0.8

Average Single-Market mm—
Multi-Market wssm

0.008

30 0.6

20 0.4

0.006

Normalized Cost (%)

10

0.004

Unavailability (%)

Average Correlation Coefficient

= 1 0.2 1 I I I 0.002 -
0 0 I 0

us-east-1a us-east-1b us-west-1a eu-west-1a

us-east-1a us-east-1b us-west-1a eu-west-1a

us-east-1a us-east-1b us-west-1a eu-west-1a

(a) Bidding in multiple markets de- (b) The price correlation between the (¢) Bidding in multiple markets de-
creases the cost in comparison with different spot markets within a region is creases unavailability in comparison to

single-market schemes. low.

single-market schemes.

Figure 8: The benefits of bidding in multiple markets within the same region.

as well as across different regions. Our multi-region algo-
rithm is identical to the multi-market algorithm described
in Section 4.4 except that the algorithm looks for the cheap-
est market both within and across regions for migration.
We evaluate our multi-region bidding algorithm on pairs of
regions and we show the results in Figure 9. To normal-
ize the cost achieved by our multi-region algorithm, we use
the lowest on-demand cost available in the two allowable
regions as the baseline. As we show in Figure 9(a), our
multi-region strategy achieves 12-17% of the baseline cost,
resulting in a significant cost reduction in comparison to the
baseline of not using the spot markets at all. Further, our
multi-region algorithm results in a normalized cost that is
5-28% smaller than the average cost achieved by the single-
region bidding algorithm operating in each of the two re-
gions. The reason for the additional cost savings is that the
prices across two regions have a low correlation as shown in
Figure 9(b). Therefore, when the spot price increases in one
region, our multi-region algorithm is able find cheaper prices
in the other region.

However, service unavailability can actually increase in
some cases with multi-region bidding as can be seen in Fig-
ure 9(c). The reason is that regions such as us-east-la and
us-east-1b that tend to have cheaper prices, also have greater
variability in those prices (cf. Figure 10). Whereas the eu-
west region tends to be more expensive but the prices are
more stable. Since our multi-region bidding algorithm mi-
grates its servers to spot markets primarily based on a lower
price, it can sometimes migrate to lower cost regions (such
as us-east) with more volatile prices. Markets with larger
price volatility can cause more migrations as the prices fluc-
tuate making these markets more expensive at times than
the other markets. The increased migration causes more
unavailability. Bidding algorithms that also consider price
stability instead of greedily opting for the cheapest price is
a topic for future research.

S. COST AND AVAILABILITY ANALYSIS

In the previous section, we show that by using nested
VMs and migrating between on-demand instances and spot
instances, we can achieve a significant reduction in cost over
using on-demand instances alone. In this section, we go
a step further to show the advantage of our method over
current spot market.

Figure 11 compares our proactive method to using spot
instances alone. We find that although using spot instances
reduce cost in some markets, its availability is quite bad.

2 T
small m—
medium s—
large mwwm
c 15 xlarge]
2 |
s
>
a
° 1
<
el
C
S
@ 05
0 it

us-east-1a us-east-1b us-west-1a eu-west-1a

Figure 10: The prices of us-east are more variable
than us-west or eu-west.

Cost Availability

Only On-demand High High
Only Spot Low Low
Using migration mechanisms Low High

Table 3: By using a combination of on-demand and
spot servers, we can achieve low cost and high avail-
ability for online services

In small, medium and large markets, unavailability is over
1% which is not acceptable for always-on internet services.
Further, since the price may be over bid limit for a long
period, services can be unavailable for hours or even days.
Hence, using spot instances alone are not a good choice for
hosting always-on internet services, as conventional wisdom
has held.

As table 3 shows, our method combines the advantage of
on-demand and spot market and provides a solution with low
cost and high availability to host always-on internet services
in current cloud platforms.

6. IMPACT OF SYSTEM PERFORMANCE
ON COST

Although nested VMs on spot instances provide good sav-
ings, nested virtualization can also impose system perfor-
mance overheads. In this section, we quantify these system
performance overheads and study their impact on the even-
tual cost savings.

A\/erage S‘ing\erFiegion —
Multi-Region s

0.8

0.005

Average Slngle Reglon —
Multi-Region e |

0.004

0.6
0.4

0.003

Normalized Cost (%)
Correlation Coefficient
between Regions

0.2

(a) Bidding in multiple regions decreases
the cost in comparison with single-region
schemes.

Figure 9: A comparison of multi-region versus single-region

multiple markets within their allowable regions.
50 —
Proactive
Pure Spot s
40
S
g 30
el
(5]
N
T 20
E
o
P4
) I_I II II
0

smalll medium large xlarge

“Sas, ea.g as as
’aa”a t, t

ng e/]g
Teag. ,bWGSI

Unavailability (%)

0.002 -

Unavailability (%)

0.001 -

o

s,
e, Seag - Cag s Oagy s 0
s, , b St 7a s; Ta s; 7a s; Ta s;

76 b]
00y 0l ’Ide Teng,, ‘3/7:7 6 2 0‘3/7:7 e/;d a’b’e
Sy
7%*9'7%8’/ eS"/ %‘”7 a‘” 76 St e‘9’/ GS/, e‘9’/ 83/7

(b) The price correlation across regions is (¢) Multi-region unavailability can in-
low, enabling the multi-region algorithm crease in cases when the lower-priced mar-
to avoid price hikes by switching to a kets such as us-east happen to also be less
cheaper alternate region.

stable.

bidding algorithms. Both algorithms bid in

100 —

Proactive

Pure Spot s
10
1
0.1
0.01
0.001

small medium large xlarge

(a) Using pure spot instances can slightly reduce the total (b) Using pure spot instances largely increases unavailabil-
ity

Figure 11: A comparison of proactive method versus using only spot servers.

cost
Amazon VM (Mbps) Nested VM (Mbps)
Network TX 304 304
Network RX 316 314
Disk Read 304.6 297.6
Disk Write 280.4 274.2

Table 4: Network and Disk I/O performance of
nested VMs is comparable to Amazon’s native VMs

6.1 Disk and Network I/0 Overheads

Since we use a second hypervisor to host our nested VMs,
our system will incur performance overheads. We compare
the system performance of Amazon VMs and nested VMs
(using the xen-blanket nested hypervisor). In our experi-
ments, we use Amazon EC2 m3.medium VMs which has 1
virtual CPU and 3.75 GB memory, using HVM virtualiza-
tion instances and Elastic Block Store (EBS). When creating
a nested VM, we only distribute 3 GB memory to it because
domO needs some memory to hold its service. Network ad-
dress translation (NAT) is used to provide transparent net-
work access to the nested VMs.

We first measure the network 1/O and disk I/O overhead.
We use iperf to get a measurement of network throughput.
From Table 4 we can see that both the transmitting rate
and receiving rate of nested VM matches the throughput of
Amazon VM. Then we ran dd to measure disk I/O. System

caches at all layers were flushed before reading and writing
2GB of data from the root file system. Table 4 shows that
disk I/O performance is only degraded by 2%. These re-
sults show that disk and network I/O performance of nested
virtual machine instances is close to Amazon’s native VMs.

6.2 CPU Overhead Benchmarking

The original Xen-blanket paper [20] provided detailed re-
sults on the CPU overheads imposed by the Xen-blanket
nested hypervisor. We use TPC-W as an example bench-
mark application to verify their results in Amazon’s EC2
cloud. TPC-W is a web benchmark that emulates an online
e-commerce store. We use a Java servlets-based multi-tiered
configuration of the TPC-W shopping website. Our experi-
ment injects an ”ordering workload” where 50% of the clients
only browse the website and the remaining 50% execute or-
der transactions. TPC-W allows us to measure the influence
of the extra xen-blanket hypervisor on the response time
perceived by the clients of an interactive web application.

We perform the above experiment with two common con-
figurations: 1) browsers fetch images from the server while
browsing 2) browsers don’t fetch images from the server
while browsing. The first configuration emulates a case
where the entire website, including the images, is served
by our server VMs. The second configuration emulates a
case where only the base web page is served by our server
VMs and the embedded images are cached and served by
a third-party content delivery service. Figure 12 shows

25000

Amazon VM ——

g Nested VM ---------
~ 20000 |
[
£
=
g 15000 [|
o
&
o 10000 - |
o
[
&
5 5000 |
>
<

0 . .) ‘ ‘

100 150 200 250 300 350 400

Number of EBs

Average Response Time (ms)

10000 T T
Amazon VM ——
9000 Nested VM =--s---- 1

8000 | 1
7000 | - 1
6000 | P |
5000 | - i
4000 |
3000 |
2000 |
1000 |

0

250 300 350
Number of EBs

100 150 200 400

(a) If browsers fetch images while browsing, nested VM’s (b) If browsers don’t fetch images while browsing, nested

performance is no worse than Amazon VM

VM’s performance is upto 50% worse than Amazon VM

Figure 12: The overhead of nested VM depends on the type of service it provides

the response time under a varying load imposed by differ-
ent number of emulated browsers. Figure 12(a) shows the
result under the first configuration. We can see that nested
VMs can achieve similar performance as Amazon VMs. This
is because when browsers get images from the server, the
benchmark is I/O bound and xen-blanket can provide effi-
cient I/O. Figure 12(b) gives the result under the second
CPU-intensive configuration; in this case, the CPU over-
head depends on the load and in the worst case, we see that
nested VMs incur up to a 50% overhead over Amazon VMs.

From our system measurements, we observe that disk and
network intensive services will see close to native perfor-
mance and achieve most of the cost savings. For CPU-
intensive workloads, the overheads depends on the actual
load and can reduce the cost savings (since additional ca-
pacity is needed to service a particular load). In the worst
case, performance may be halved, yielding actual savings of
12%-34% of the baseline cost. Of course, Xen-Blanket is a
research prototype of a nested hypervisor and a commercial
ested hypervisor implementation may be able to optimize
the performance overhead and yield better savings.

7. RELATED WORK

There has been recent research on cloud spot servers, but
much of prior work has focused on interrruption-tolerant
batch jobs. The use of spot servers to reduce the cost of data-
intensive MapReduce batch jobs has been studied in [12] and
[6]. Optimal bidding strategies that minimize completion
times of short batch jobs have also been studied in [23], [17],
and [19]. Checkpointing techniques for batch jobs running
on spot servers were studied in [22]. In contrast, our work
focuses on using spot instances of always-on services that
interact with users in real-time.

Our work builds on a large body of work in virtualiza-
tion techniques [5]. Live migration of virtual machines was
studied in [7], while checkpointing techniques for virtual ma-
chines have been studied in [9, 18]. Nested virtualization in
the context of the Xen virtual machine platform was pro-
posed in [20]. Lazy restoration methods have been studied
in [24, 10, 11]. SpotCheck [16] is a system that uses nested
virtualization and migration mechanisms to manage server
pools based on spot and on-demand servers. Our work as-
sumes the presence of such system level mechanisms and

examines a range of bidding and migration policies that use
these mechanisms in the cloud context.

8. CONCLUSIONS

In this paper we studied the efficacy of using spot servers
to lower the cost of hosting always-on Internet services. We
proposed a cloud scheduler that combines bidding algorithms
and migration techniques to reduce, or nearly eliminate, un-
availability by migrating a spot server to an on-demand
server when needed. Our results demonstrated the feasi-
bility of using our proactive approach to provide availability
levels that are close to levels desirable for always-on ser-
vices, at nearly one-third to one-fifth of the cost of the tra-
ditional approach of using on-demand servers. As part of
future work, we plan to design more sophisticated bidding
strategies that take spot price stability into account to fur-
ther reduce server revocation frequency, and hence, service
unavailability.

9. ACKNOWLEDGMENTS

We thank all the reviewers for their insightful comments,
which improved the quality of this paper. This work is sup-
ported in part by NSF grants CNS-1413998, CNS-1422245
and CNS-1229059.

10. REFERENCES

[1] https://azure.microsoft.com/.

[2] https:
//cloud.google.com/products/compute-engine/.

[3] http://aws.amazon.com/.

[4] http://aws.amazon.com/solutions/case-studies/
netflix/.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. ACM
SIGOPS Operating Systems Review, 37(5):164-177,
2003.

[6] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder,
A. Tantawi, and C. Krintz. See spot run: using spot

8

(10]

(1]

(12]

(13]

(14]

instances for mapreduce workflows. In Proceedings of
the 2nd USENIX conference on Hot topics in cloud
computing, pages 7-7. USENIX Association, 2010.

C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul,

C. Limpach, I. Pratt, and A. Warfiel. Live migration
of virtual machines. In Proceedings of Usenix NSDI
Symp., May 2005.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In Proceedings of the 2Nd
Conference on Symposium on Networked Systems
Design & Implementation - Volume 2, NSDI'05, pages
273-286, Berkeley, CA, USA, 2005. USENIX
Association.

B. Cully, G. Lefebvre, D. Meyer, M. Feeley,

N. Hutchinson, and A. Warfield. Remus: High
availability via asynchronous virtual machine
replication. In Proceedings of the 5th NSDI Symp.,
pages 161-174. San Francisco, 2008.

M. Hines and K. Gopalan. Post-copy based live virtual
machine migration using adaptive pre-paging and
dynamic self-ballooning. In Proceedings of ACM VEE
Conference, March 2009.

A. Lagar-Cavilla et al. Snowflock: rapid virtual
machine cloning for cloud computing. In Proceedings
of ACM EuroSys, pages 1-12, 2009.

H. Liu. Cutting mapreduce cost with spot market. In
8rd USENIX Workshop on Hot Topics in Cloud
Computing, pages 1-5, 2011.

A. Marathe, R. Harris, D. Lowenthal, B. R.

de Supinski, B. Rountree, and M. Schulz. Exploiting
redundancy for cost-effective, time-constrained
execution of hpc applications on amazon ec2. In
Proceedings of the 23rd International Symposium on
High-performance Parallel and Distributed Computing,
HPDC ’14, pages 279-290, New York, NY, USA, 2014.
ACM.

E. Nygren, R. Sitaraman, and J. Sun. The Akamai
Network: A platform for high-performance Internet
applications. ACM SIGOPS Operating Systems
Review, 44(3):2-19, 2010.

(15]

[18

[19]

23]

(24]

F. Salfner, P. Troger, and A. Polze. Downtime analysis
of virtual machine live migration. In DEPEND 2011,
The Fourth International Conference on
Dependability, pages 100-105, 2011.

P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy.
Spotcheck: Designing a derivative iaas cloud on the
spot market. In Proceedings of the Tenth European
Conference on Computer Systems, 2015.

X. Shi, K. Xu, J. Liu, and Y. Wang. Continuous
double auction mechanism and bidding strategies in
cloud computing markets. arXiv preprint
arXiw:1307.6066, 2013.

R. Singh, D. E. Irwin, P. J. Shenoy, and K. K.
Ramakrishnan. Yank: Enabling green data centers to
pull the plug. In NSDI, pages 143-155, 2013.

Y. Song, M. Zafer, and K.-W. Lee. Optimal bidding in
spot instance market. In INFOCOM, 2012 Proceedings
IEFEE, pages 190-198. IEEE, 2012.

D. Williams, H. Jamjoom, and H. Weatherspoon. The
xen-blanket: virtualize once, run everywhere. In
Proceedings of the Tth ACM european conference on
Computer Systems, pages 113-126. ACM, 2012.

T. Wood, K. Ramakrishnan, P. Shenoy, and J. V. der
Merwe. Cloudnet: Dynamic pooling of cloud resources
by live wan migration of virtual machines. In Proc. of
ACM VEE, March 2011.

S. Yi, D. Kondo, and A. Andrzejak. Reducing costs of
spot instances via checkpointing in the amazon elastic
compute cloud. In Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on, pages 236—243.
TEEE, 2010.

M. Zafer, Y. Song, and K.-W. Lee. Optimal bids for
spot vms in a cloud for deadline constrained jobs. In
Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, pages 75-82. IEEE, 2012.
I. Zhang, A. Garthwaite, Y. Baskakov, and K. C.
Barr. Fast restore of checkpointed memory using
working set estimation. In ACM SIGPLAN Notices
volume 46, pages 87-98. ACM, 2011. ,

